
A Unified Component Framework for Dynamically
Extensible Virtual Environments

Andrzej Kapolka, Don McGregor, Michael Capps
The MOVES Institute

Naval Postgraduate School
Monterey, CA 93943, USA

+1 831 656 {2253, 4090, 2865}

{akapolk, mcgredo, mcapps}@nps.navy.mil

ABSTRACT
If large-scale shared virtual worlds are to be established on the
Internet, they must be based on technologies that allow them to
adapt, scale, and evolve continuously—that is, without their being
taken offline. In the course of designing NPSNET-V, an
architecture intended to satisfy these criteria through component-
based dynamic extensibility, the authors recognized the need for a
consistent, unified component framework. This framework,
which they implemented in Java™, allows one to construct
applications as component hierarchies rooted at an invariant
microkernel. A simple extensible interface layer and event model
allow components to communicate with one another, and an XML
configuration and serialization mechanism permits applications to
store and transmit component and application state in a versatile
standardized format. After an initial bootstrapping process, one
may add, remove, and upgrade components at run time, and one
may introduce newly loaded Java™ code anywhere in the
application hierarchy at any time. The complications posed by
this reconfigurability and the hierarchical nature of NPSNET-V
applications led the authors to develop a consistent design
strategy, which they based largely on several common design
patterns. The most critical design pattern that they used was the
Model-View-Controller pattern, which forms the basis of the
NPSNET-V entity model.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features—frameworks, patterns; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—virtual reality

General Terms
Design, Languages

Keywords
Component-based architectures, dynamic extensibility, networked
virtual environments, Java, XML

1. INTRODUCTION
1.1 Motivation
The software required to create a networked virtual world may
consist of many different elements—client applications, server
applications, and middleware libraries, to name a few—but all
share a single limitation: unless their authors have explicitly
designed them with extension in mind, their feature sets are
completely fixed at the time they are compiled and delivered to
the end user. Many applications have no need for the ability to be
extended after deployment. Users may upgrade small client
applications, for instance, simply by replacing them with a newer
version. Larger applications may provide patching utilities that
take the application offline and replace only certain portions of
the binary executable. However, an increasing number of modern
applications provide support for run-time extension in the form of
plug-ins: downloadable program components that extend or
enhance the functionality of their host applications. Typically,
applications that support plug-ins provide only a small number of
“hooks,” or application areas in which plug-in functionality may
be incorporated.
In contrast, virtual environment applications offer an almost
limitless number of opportunities for the inclusion of plug-in
technology. Graphical plug-ins may generate 3D models on the
fly procedurally, competing with declarative geometry description
languages; networking plug-ins may provide support for new
protocols and filtering schemes; plug-ins for physical simulation
may introduce previously unknown forces; plug-ins for artificial
intelligence, when applied to the simulated inhabitants of the
virtual world, may provide the user with unexpected new
challenges. By layering and aggregating plug-ins, it should be
possible to create software in which the only functionality not
provided as a plug-in—that is, the only section of code that one
cannot replace at run time—is a minimal binding mechanism, or
microkernel.
The most critical role of plug-ins in virtual environment
technology may be their use in the creation of Internet-based
persistent shared virtual worlds. Currently, the content and scale
of such worlds are limited by the standards or software upon
which they are based. A world based on the Distributed
Interactive Simulation (DIS) standard, for instance, may only
contain the entities defined within that standard. In order to
introduce a new type of entity, the world must be brought offline,
the standard revised, and the supporting software updated and
redistributed. A world supported by fully extensible software, on
the other hand, can remain online indefinitely. As its technical

This paper is authored by an employee(s) of the United States
Government and is in the public domain.

CVE ’02, September 30–October 2, 2002, Bonn, Germany.
ACM 1-58113-489-4/02/0009

6264

requirements and the needs of its users change, and as its
developers upgrade and extend its functionality, the world will
maintain the continuity of its existence and preserve its essential
state despite the evolution of its constituents.

1.2 Background
NPSNET-V [2], an architecture intended to provide a supporting
platform for such extensible virtual worlds, had been in
development for more than a year before its authors noted an
important pattern: one by one, they were converting critical
system components from statically linked classes to dynamically
loadable modules. At first they intended only virtual entities—
such as tanks, planes, and human avatars—and network protocols
to be loaded at run time. Later they added support for the
dynamic definition of area-of-interest management strategies.
Unfortunately, because they lacked a consistent framework for
component-based development, they were forced to
“componentize” separately each desired type of module, adding
time and complexity overhead to their development efforts. After
several iterations of this reinvention process, they realized that
they would benefit significantly from creating a unified, all-
encompassing component framework: a system in which every
application could be implemented as a federation of dynamically
loadable modules, loosely coupled by a minimal set of well-
defined relationships. In other words, faced with the daunting
task of independently redesigning elements of NPSNET-V as
pluggable components, they chose to reinvent the architecture as
one in which all components—save for a minimal microkernel—
inherit from a common base class the ability to be loaded and
composed at run time.

1.3 Requirements
Although many types of applications might benefit from being
based on such a system, the authors of the NPSNET-V component
framework chose to focus their efforts on satisfying the specific
requirements of networked virtual environments and, in particular,
NPSNET-V: a platform for student development and a test bed for
advanced virtual environment research. Any middleware intended
for student use must be as simple and consistent as possible,
allowing its users to achieve competency within the duration of an
academic quarter. Any research environment must be versatile
and reconfigurable, allowing researchers to experiment with many
different technologies and strategies without having to modify the
environment’s underlying framework. That framework must build
upon preexisting standards in order to maximize its
interoperability with other systems and to minimize the amount of
effort spent by its developers in recreating functionality available
elsewhere.

Additionally, virtual environment architectures—particularly
those intended to support large shared virtual worlds over long
periods of time—share a number of challenging technical
requirements. Because virtual environment applications demand
high performance, they require an underlying architecture that is
efficient and that encourages efficient extension. Because shared
virtual worlds vary widely in size and number of participants, the
architecture must be scalable. The architecture must provide a
persistence mechanism so that world state is not lost when no
participants are present within the world. It must be version-safe,
because large and long-lived virtual worlds tend to incorporate
different versions of the same components. It must encourage

composability, so that one may easily and effectively combine
worlds and world components developed by different
organizations. Finally, and perhaps most importantly, it must be
dynamically extensible; that is, to as large an extent as possible,
the architecture must permit the seamless run time extension and
replacement of any part of its hosted application.

1.4 Previous Work
Several existing architectures have addressed this dynamic
extensibility requirement. Bamboo [9], a multi-platform, multi-
language plug-in framework, was the first system to provide a
microkernel-based virtual environment architecture in which all
system elements aside from the kernel were pluggable
components that one could add, remove, and replace at run time.
To maximize efficiency, Bamboo’s components run as native
shared libraries, distributed as portable source code and compiled
at run time by a sophisticated language loading mechanism.
Unfortunately, this very flexible approach incurs a great deal of
complexity, particularly in terms of facilitating communication
between components written in different languages. The most
effective means of performing such communication is the
Common Object Request Broker Architecture (CORBA) [10], in
which component interfaces are described in a separate, common
interface description language that may be used to generate
bindings for as many different languages as are used by the
application’s components. CORBA offers a number of useful
services, and supports location transparency: the ability to interact
with components over the network in the same manner as one
would interact with local components. However, CORBA is a
heavyweight system that developers often find difficult to learn
and employ.

Bamboo’s components make extensive use of callbacks in
communicating with one another—a technique that is also
fundamental to the GNU/MAVERIK architecture [4]. Like
Bamboo, MAVERIK is a microkernel-based system; however, the
extent to which MAVERIK supports dynamic extension is
unclear. The Deva system [6] extends MAVERIK with
functionality intended to support networked virtual environments.
Both MAVERIK and Deva feature a number of innovations
applicable to component-based virtual environment applications
hosted within any framework: MAVERIK, for instance, features a
powerful immediate-mode rendering model in which components
implement different culling methods and display algorithms, and
Deva offers a unique behavior model that differentiates between
each entity’s innate behavior and the behavior that it acquires
from its environment. For simplicity and portability, the
MAVERIK kernel consists of C code only; Deva is written in
C++.

The designers of the Java™ Adaptive Dynamic Environment
(JADE) [5] chose to base their architecture entirely on Java™: a
platform that allows code to be compiled to an intermediate
language and executed on any system capable of running a Java™
Virtual Machine. JADE also provides a number of abstractions
useful for any component-based architecture. For instance, each
JADE component is subject to a well-defined lifecycle and exists
within a unified containment hierarchy. This principle of
containment is also fundamental to the Extensible Runtime
Containment and Services Protocol (ERCSP) [7], an extension to
the JavaBeans™ component standard [8]. The ERCSP, however,
augments its containment model with provisions for the

6365

registration and location of services, defined as Java™ interfaces
and implemented by dynamically loadable service providers. The
authors of the JavaBeans™ standard have extended it recently to
include an XML serialization mechanism: a crucial feature, as
traditional Java™ serialization lacks the version-safety required
for long-term component storage and the transmission of
component state between heterogeneous clients.

Still, although the JavaBeans™ component model, like the other
systems discussed above, provides a number of useful and
important features, the authors felt that no one existing
architecture could satisfy all of NPSNET-V’s requirements
independently. They decided, therefore, to build an entirely new
framework, incorporating elements from all of the existing
architectures that they surveyed. For example, it is often difficult
to develop complex applications using JavaBeans™, particularly
when extensive component-to-component communication must be
performed, because the JavaBeans™ property model is optimized
for human editing. Beans are intended to be largely independent,
and although the ERCSP addresses this issue to an extent by
providing a contextual framework in which to place beans, the
ERCSP itself is complex and unwieldy. However, the authors
adapted the ERCSP service model, along with the support for
XML serialization and simple property editing offered by the
JavaBeans™ standard, for use in the NPSNET-V component
framework. Similarly, while the authors felt that the Bamboo
architecture lacked the simplicity and consistency necessary for
NPSNET-V, they realized the usefulness of basing their
framework upon an invariant microkernel and providing all
additional functionality in the form of pluggable components.
JADE provided the principal foundation for the NPSNET-V
component framework, although its lack of a persistence
mechanism prevented the authors from using it directly. The
NPSNET-V component framework owes much to JADE,
including its concepts of hierarchical containment and the
component lifecycle, and much of its terminology.

2. OVERVIEW
Like JADE, the NPSNET-V component framework is based
entirely upon the Java™ platform and hosts applications as
component hierarchies, or application graphs, rooted at an
invariant microkernel. As in JADE, the atom of composition and
extension is the Module: an abstract base class, included with the
kernel, that all components must extend. The
ModuleContainer, a subclass of Module also included with
the kernel, is not abstract; developers may either use it as a
generic container or extend it to create specialized containers.
The Kernel—a singleton module, derived from
ModuleContainer, that acts as the root of the containment
hierarchy—is home to the framework’s only main method, the
single point of entry that initializes all applications through a
bootstrapping process described in a later section of this paper.

Any application constructed using the NPSNET-V component
framework thus consists of a federation of loosely coupled
modules arranged in a strict containment hierarchy with a more
than superficial resemblance to a file system directory structure.
The Kernel acts as the root directory, and all other
ModuleContainer instances act as subdirectories. Modules
may be added to or deleted from containers at any time, and
removal operations are recursive; that is, removing a module

container also removes its contained modules. All modules are
required to possess instance names, and each module in the
containment hierarchy may be addressed using absolute or relative
paths conforming to typical Unix path conventions: for instance,
the absolute path /modelCore/entityModel addresses a
module named entityModel that is a child of a container
named modelCore, and the relative path ../viewCore
addresses a module named viewCore that is a child of the
resolving module’s container.

Figure 1. Module containment and naming hierarchy. Boxes

represent modules within the framework; arrows indicate
containment relationships. Each module has both a class name

(above) and an instance path (below).

When a module resolves a relative path, it does so through its
parent in the containment hierarchy, which represents the
contained module’s context within the application. By
convention, modules are grouped in containers according to their
functional roles, and are expected to maintain awareness of their
neighboring modules in order to establish implicit relationships
with them. Modules within the same context have easy access to
each other and share resources, including a common system-level
interface: their container. Containers are responsible for
identifying modules by their names and properties, locating
services for their contained modules, and controlling their
contained modules’ lifecycles.

Each module is subject to an explicitly controlled lifecycle
modeled closely after that used in JADE and the Java™ applet
model. All NPSNET-V modules must have no-argument
constructors, and in addition to the construction/finalization
operations common to all Java™ objects, NPSNET-V modules
must be explicitly initialized and destroyed using their init and
destroy methods. Modules that operate threads of execution—
as well as all container modules—implement two additional
methods, start and stop. In the case of container modules,
these methods act recursively, starting or stopping entire
application subgraphs. Finally, in order to support seamless
module upgrading, modules implement the replace and
retire methods. When a container must replace an old module
with a newer version, it calls the replace method of the new
module instead of init, and the retire method of the old
module instead of destroy, allowing the two modules to
perform a cooperative hand off operation. Once the new module
has absorbed the state of the old module and has notified all
dependent modules of the succession, it may interact with the

6466

other components of the application as if it were no different from
the replaced module.

Figure 2. Module lifecycle. Ellipses represent lifecycle states.
Arrows indicate transitions between those states, and arrow

labels indicate module methods associated with the transitions.

3. INTERFACE LAYER/EVENT MODEL
In order for dynamically loaded components to interact, however,
they must agree to use a common interface layer. This interface
layer consists of a number of invariant Java™ interfaces that may
be implemented by modules wishing to provide access to their
state and control mechanisms. For instance, the Startable
interface defines the start, stop, and isRunning methods to
control and query the activation state of a threaded module. A
basic interface collection is included with the kernel, but other
interfaces may be added to the system at run time. Unlike
modules, interfaces are versionless; once an interface has been
defined and published, it cannot be changed. This means that new
interfaces, when encountered, may be downloaded and
permanently added to the framework without fear of their being
removed or redefined.

The most fundamental type of shared interface used in NPSNET-
V is the property. Each property, defined as a subinterface of
PropertyBearer, represents a specific aspect or quality of its
implementing modules. The Transformable property, for
example, defines two methods: getTransform and
setTransform, each of which takes a Transform3D
(defined in the Java 3D™ libraries) as an argument. Properties
may be used to locate modules of interest; for instance, any
module may easily retrieve from its container a list of all modules
within that container that bear a specified property. As compared
to the JavaBeans™ property model, in which properties are
defined by name and accessed by simple get and set methods,
defining properties by interface is a more versatile approach that
allows easier communication between modules. However, for
lightweight properties, NPSNET-V supports the JavaBeans™
property model as well. Modules may implement the
BasicPropertyBearer interface, which defines a single
method: getBasicPropertyNames. Each name returned is
taken to be a lightweight property that may be read and written
using its corresponding get and set methods.

Among the properties that modules may implement are special
properties, services, that announce the module’s ability to perform
a critical application role. Each service is defined as a
subinterface of ServiceProvider. The TimeProvider
service, for instance, consists of an interface that defines a single
method, getCurrentTime. The principal difference between
properties and services is that, while many modules within a
single context may implement the same properties, only one
module can provide any given service. Also, containers inherit
service providers from their supercontainers. If a module requests
a service provider from its container, that container first searches
within its own context, then, if no service provider is found,
delegates the request to its parent in the containment hierarchy. In
this way, general-purpose service providers defined near the root
of the application may be overridden by specialized service
providers defined further down the hierarchy. As an example, a
default TimeProvider loaded directly under the Kernel
would provide the current time as known to the local system, but a
specialized TimeProvider, its influence limited in scope to
modules participating in a networked simulation, would provide a
network-synchronized time reading.

When services are registered and deregistered, and when module
properties are modified, the system must somehow notify all
parties that may be affected by the change. NPSNET-V
accomplishes this by providing a synchronous event model that
relies heavily on Java™’s powerful reflection capabilities. Each
module maintains a list of event listeners for every type of event
that it generates. For example, instances of ModuleContainer
generate events when service providers are registered or removed.
To receive these events, listeners may subscribe to all events from
that container, to events related to module containment
(subclasses of ModuleContainerEvent), or to one specific
type of event, ServiceProviderChangeEvent. Modules
fire the PropertyChangeEvent when their properties change,
and listeners concerned with specific properties may register to
receive only events associated with their properties of interest.

4. CONFIGURATION/SERIALIZATION
The interface layer and event model facilitate component-to-
component interaction, but they do not define a method by which
component relationships may be defined and stored; for this, the
NPSNET-V component framework integrates an XML-based
configuration and serialization mechanism. Through this
mechanism, the state of any part of a running application may be
serialized and stored as an XML file, which may be loaded at a
later time, or on another client, to recreate the stored
configuration. XML offers at least three major advantages over
proprietary binary serialization formats: its textual nature allows
for easy human editing and debugging, its extensibility ensures its
adaptability and version-safety, and its popularity as a standard
has encouraged a proliferation of freely available XML tools. The
XML configuration files read and generated by NPSNET-V are
used for initial application bootstrapping, and may be used for
persistent storage of world components, for transferring
component state between applications over the network, and for
other related tasks.

The applyConfiguration and getConfiguration
methods of class Module provide the means to activate the
configuration and serialization mechanism. A module may

6567

provide specialized handling by overriding these methods; for
instance, the ModuleContainer class recursively serializes its
contained modules within its implementation of
getConfiguration, so that any part of the application graph
may be serialized by calling the getConfiguration method
of its root container. By default, configuration and serialization
are largely handled by the extensible
ConfigurationElementInterpretationProvider
and PropertySerializationProvider services. These
services manage handlers that interpret XML elements according
to their tag names and serialize modules’ state according to the
property interfaces that they implement. For instance, the
PropertySerializationProvider encodes any
Transformable module’s transform upon serialization by
calling the module’s getTransform method and converting the
result to an XML <Transform/> element. Upon loading a
configuration that contains such an element, the
ConfigurationElementInterpretationProvider
decodes the element and calls the target module’s
setTransform method.

Figure 3. Configuration and serialization. The upper half of
the figure represents a running application, while the lower

half contains the kernel’s serialized configuration.

As an example of the usefulness of combining this configuration
and serialization mechanism with a hierarchical component
framework, NPSNET-V includes the ConfigurationServer
module: an HTTP server that provides access to the configuration
of running NPSNET-V applications. Once the
ConfigurationServer is loaded, the user may retrieve a
serialized representation of any part of the application graph using
a URL, such as
http://hostname/modelCore/entityModel, that
addresses an application component. In addition to the HTTP
GET and HEAD methods [1], the server supports the POST
method, allowing one to apply, as well as generate, application
configurations. Combined with a web browser, the
ConfigurationServer acts as an effective debugging tool;
however, its primary utility lies in its ability to transfer component
and application state between clients. For instance, one may
replicate the entire state of a running application by starting

NPSNET-V with the URL of a remote client on the command
line.

5. BOOTSTRAPPING/EXTENSION
The NPSNET-V component framework initializes itself through a
bootstrapping process driven by one or more application
configurations. The invoking user must specify each
configuration on the command line, either as the path of a local
file or as the URL of a web resource. The kernel applies each
configuration to itself in sequence upon startup. Typically, each
configuration includes several <Module/> elements, each of
which causes the kernel to load and initialize—and, when
necessary, start—a new module. If the newly loaded module is a
container, it may itself load modules. Configuration files indicate
this behavior using nested <Module/> tags.

The first module loaded must usually be a
ResourceLocationProvider: a service provider module
that locates and loads resources, including module classes,
according to their names and version numbers. The <Module/>
element that causes the kernel to load the
ResourceLocationProvider must include a package
attribute specifying the URL from which the module class may be
retrieved. All subsequent <Module/> elements, however, need
only specify the name of the desired module class; the
ResourceLocationProvider provides the corresponding
URLs. Each resource is uniquely identified by its fully qualified
name (such as org/npsnet/views/animals/Shark.wrl)
and its version string, which must conform to the standardized
format used in Java™ manifest files. Version strings may be
compared for recentness, allowing the
ResourceLocationProvider to locate the most recent
versions of requested resources. Resources must be bundled in jar
(Java™ archive) files that include manifests describing their
content. The NPSNET-V manifest format builds off of that used
in the Java™ platform, adding support for the representation of
module capabilities and dependencies.

In addition to the ResourceLocationProvider, the kernel
must usually load several other modules providing system level
functionality before the component framework can achieve
robustness. For instance, the kernel implements the
ConfigurationElementInterpretationProvider
service, but it is only able to interpret four XML tags upon
startup: <Module/>, <Container/>, <Include/>, and
<Debug/>. In order to process other tags, the kernel must load
additional modules that extend the configuration element
interpretation service. Similarly, the kernel cannot serialize
module properties upon startup; for this, it must load an
implementation of the PropertySerializationProvider
service. The related PropertyTransferProvider service
provides a means by which property values may be automatically
transferred between modules during the upgrade process—a
process that may be controlled using an implementation of the
ModuleUpgradeProvider service.

Typically, a ModuleUpgradeProvider periodically checks
all loaded modules for more recent versions, upgrading each
module when necessary. One may also manually activate the
upgrade process using, for example, a console command. When a
module must be upgraded, the upgrade provider creates an
instance of the new module version and orders the module’s

6668

container to replace the old instance with the new. In doing so,
the container coordinates a hand off procedure in which the new
module assumes the state and application role of the old module,
typically using the PropertyTransferProvider to copy
state information according to the properties shared by both
modules. To notify dependent modules of the transfer, the old
module fires a ModuleReplacementEvent before retiring.

In addition to being able to activate the upgrade process, any
module may extend the system at any time by loading new
modules and attaching them to the framework. Modules may do
this either indirectly, by applying configuration documents to
module containers, or directly, by instantiating and registering the
modules themselves. Each loaded module may operate threads of
execution, provided that it implements the Startable property
interface. When all threads of execution have ceased, or
whenever a module requests that the application be terminated,
the kernel disassembles the framework, recursively stopping and
destroying all loaded modules before exiting the application.

6. DESIGN STRATEGIES
Applications constructed using the NPSNET-V component
framework may assume a variety of different forms, but in order
to manage the complexity incurred by their reconfigurable nature,
they must base their configurations and their components on a set
of consistent design strategies. Many of the strategies employed
by NPSNET-V components are based on design patterns [3]:
well-understood, reusable elements of high-level software design.
Other strategies take advantage of NPSNET-V’s containment
hierarchy to simplify relationships between components. For
instance, whenever possible to do so without sacrificing
versatility, components allow one to define relationships
implicitly through their containment configurations. When one
loads a Channel (a module that represents a communications
link) as the child of a NetworkController (a module that
forms and transmits network updates), the two modules connect
automatically, and the NetworkController begins to
transmit and receive messages through the Channel. Similarly,
one may add a GLView, a module used as an OpenGL scene
element, to a rendering traversal by loading it as the child of a
GLView that is already being traversed. In this manner, the
containment hierarchy shapes the principal flows of both control
and data within the application.

One may use modules conforming to the filter pattern to affect
this flow. Within NPSNET-V, filter modules transfer control or
data between their parents and their children, usually applying
some transformation in doing so. For example, the
AggregatingChannel, when placed between a
NetworkController and another Channel module, collects
the packets received from its parent and stores them in an
aggregation buffer until that buffer reaches a certain size
threshold, then transmits the entire contents of the buffer to its
child Channel. When the AggregatingChannel receives
aggregated incoming packets from that Channel, it splits them
into their component subpackets and forwards them to its parent
NetworkController.

The façade pattern is another pattern of which NPSNET-V
components make extensive use. Façade modules act as fronts for
the subgraphs that they contain, providing unified interfaces for
collections of related modules. The SwitchingCamera, for

instance, is a Camera that may contain any number of child
Camera modules. The Camera interface describes several
attributes, such as field of view, common to all cameras. The
SwitchingCamera, when asked to return these attributes,
returns the values corresponding to its currently selected child
Camera. Modules may cycle between the
SwitchingCamera’s child cameras by invoking its
previousCamera and nextCamera methods.

7. ENTITY MODEL
Cameras are examples of entities: modular constructs that
conform to the model-view-controller pattern and that represent
individual elements of virtual worlds hosted within the NPSNET-
V architecture. The model-view-controller pattern requires that
the abstract state of each entity, its model, be separate from its
views, which depict the entity to the user, and from its controllers,
which control the entity’s state. Within NPSNET-V, each model
must implement the EntityModel property interface. Views
and controllers must implement the EntityView and
EntityController interfaces, respectively. The view and
controller interfaces extend Targeted: a generic property
interface used by any module that relies on a target. In the case of
views and controllers, that target is the model.

In addition to the model-view-controller pattern, two other
patterns perform crucial roles in the NPSNET-V entity model: the
observer pattern and the remote proxy pattern. The observer
pattern, in conjunction with the NPSNET-V event model, allows
models to notify their dependent views and controllers of changes
to the model state by firing a PropertyChangedEvent. A
view module that must update its visual depiction of the entity
when the entity moves, for instance, may subscribe to be notified
of all updates to the model’s Transformable property.
Likewise, a NetworkController may subscribe to its
model’s event stream in order to transmit the entity’s state updates
across the network. Entity state replication within NPSNET-V
depends upon the remote proxy pattern, which allows a local
replica model, or ghost, to act as a stand-in for a remotely owned
master model. Modules, including views and controllers, may
interact with the ghost as if it were controlled by the local client,
but each state-modifying interaction that they attempt must be
forwarded to the remote owning application, which maintains the
definitive representation of the entity’s state.

Entities, like modules, may form hierarchical containment
structures. A world may be an entity, as may a vehicle within that
world and an avatar within that vehicle. Typically, the model
graph of an application is wholly or partially mirrored by its view
and controller graphs. Each graph must be rooted at a core
module—a model core, a view core, or a controller core—that is
responsible for managing all modules beneath it. Views and
controllers whose targets are containers listen for the registration
of new modules within those containers in order to create
corresponding children of their own. In order to create these
children, container views and controllers require the models to
bear associated module configurations: stored configurations that
correspond to specific view and controller types. An entity model
may store any number of associated module configurations, but
may hold only one configuration for each type of view and
controller: a GLView configuration for OpenGL rendering, for
instance, a TextView for textual representation, and a

6769

KeyController to allow users to manipulate the entity’s state
using the keyboard. One may add new associated module
configurations to entity models at any time.

Figure 4. Entity model. Solid lines indicate containment

relationships; dotted lines indicate targeting relationships.

Although these associated module configurations may be stored
along with the entity model using the standard XML serialization
procedure, a specialized mechanism exists to provide a more
versatile means of serializing entities. The entity serialization
mechanism reads and writes XML documents with three high-
level elements: <Model/>, <View/>, and <Controller/>.
Each document includes one <Model/> element that describes
the class and configuration of the model—minus its associated
module configurations, which are represented by the separate
<View/> and <Controller/> elements. Unlike a module
configuration, which represents the configuration of its source
model, an entity configuration represents the source entity itself.
This means that one may create an entity and save its
configuration as a prototype suitable for inclusion in other
environments.

8. CONCLUSION
Techniques such as the definition of a consistent entity model and
the use of well-known design patterns have helped the authors of
the NPSNET-V component framework satisfy many of their stated
requirements. The framework provides a simple and versatile
platform for dynamically extensible networked virtual
environments, suitable both for education and for advanced
research. It makes use of existing standards such as HTTP and
XML in order to maximize its interoperability with other systems,
features a configuration and serialization mechanism able to
support persistent virtual worlds, encourages modular application
development, and provides a version-safe means of dynamically
loading and upgrading components. Its efficiency and scalability,
however, remain untested, as does its ability to facilitate
interoperation between components and component
configurations developed by different organizations.

Enabling that ability will be one of the primary goals of future
NPSNET-V research. The NPSNET-V component framework is
simply a foundation upon which to build; aside from its entity
model, it provides few of the enormous number of conventions
and interfaces that will be necessary to support the creation of
massive shared virtual worlds from heterogeneous collections of

components. There must be standards for networking, for
graphics, for physical modeling; there must be ways of specifying
user interfaces, of sharing resources, of integrating agent-based
systems. In designing component-based architectures, one must
often put as much effort into defining the interfaces that connect
components as into the implementation of the components
themselves. When correctly designed, however, component-based
architectures justify their cost by providing the means to
implement more flexible, more versatile, and more extensible
applications.

The greatest benefits of a component-based architecture emerge
when one combines it with an open source development model.
By freely publishing the interfaces through which components
interact, by providing component source code to learn from and
build upon, and by supplying full documentation for each
interface and each component, the designers of component-based
architectures may draw upon the resources of the open-source
community to create large and diverse libraries of interoperable
components. To this end, the authors of the NPSNET-V
component framework have established a presence at the popular
SourceForge™ open source development web site. The
NPSNET-V component framework, along with all source code
written in support of NPSNET-V, may be downloaded from
http://sourceforge.net/projects/npsnetv. It is
the authors’ hope that by encouraging the participation of the
open source community in designing and developing NPSNET-V,
they may allow it to grow from a simple research environment and
educational toolkit into a platform capable of supporting the next
generation of networked virtual worlds.

9. REFERENCES
[1] Berners-Lee, T.; Fielding, R.; Frystyk, H. RFC 1945:

Hypertext Transfer Protocol – HTTP/1.0. Network Working
Group, May 1996.

[2] Capps, M.; McGregor, D.; Brutzman, D.; Zyda, M.
NPSNET-V: A New Beginning for Dynamically Extensible
Virtual Environments. IEEE Computer Graphics and
Applications, September/October 2000.

[3] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[4] Hubbold, R.; Cook, J.; Keates, M.; Gibson, S.; Howard, T.;
Murta, A.; West, A. GNU/Maverik: A Micro-Kernel for
Large-Scale Virtual Environments. Proceedings of the ACM
Symposium on Virtual Reality Software and Technology,
1999.

[5] Oliveira, M.; Crowcroft, J.; Slater, M. Component
Framework Infrastructure for Virtual Environments.
Proceedings of the ACM Collaborative Virtual Environments
Conference, 2000.

[6] Pettifer, S.; Cook, J.; Marsh, J.; West, A. DEVA3:
Architecture for a Large-Scale Distributed Virtual Reality
System. Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, 2000.

[7] Sun Microsystems, Inc. Extensible Runtime Containment
and Services Protocol for JavaBeans . L. Cable (Ed.),

6870

1998. Available at
http://java.sun.com/beans/glasgow/beancontext.pdf.

[8] Sun Microsystems, Inc. JavaBeans .
http://java.sun.com/products/javabeans.

[9] Watsen, K.; Zyda, M. Bamboo – A Portable System for
Dynamically Extensible, Real-Time, Networked Virtual
Environments. Proceedings of the IEEE Virtual Reality
Annual International Symposium, 1998.

[10] Wilson, S.; Sayers, H.; McNeill, M.D.J. Using CORBA
Middleware to Support the Development of Distributed
Virtual Environment Applications. Proceedings of the
WSCG International Conference in Central Europe on
Computer Graphics, Visualization, and Computer Vision,
2001.

6971

